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Abstract: Microaggregation is a technique used for the protection of the confidentiality of respondents in micro-
data releases. It is typically used for economic data where respondent identifiability is quite high. Rather than releas-
ing a perturbed version of the data, microaggregation releases the averages of small groups in which no single
respondent is dominant.

The original form of microaggregation was for univariate data. It was implemented by sorting the data and then

reporting the averages of adjacent groups of fixed size. Any partial group at the end would be pooled with the final
complete group to ensure that the desired minimum group size was obtained. The typical group size was small, with
five a common choice. An immediate improvement would be to allow some number of internal groups, perhaps near
the center of the data, to be larger to compensate for the incomplete group.

As a further improvement the groups can be allowed to have varying sizes so that no group will include a large gap in
the sorted data. Each of the resulting groups can be more homogeneous when the group boundaries are allowed to be
sensitive to the distribution of the data. This can be described as a clustering problem with a variable number of clus-
ters and a minimum cluster size. The number of clusters is chosen to be as large as possible consistent with homoge-
neous clusters and the minimum cluster size.

Techniques for determining such data directed microaggregations have been proposed which use randomized search-
ing methods. These methods are typically terminated early as they are quite expensive to operate. They seek to mini-
mize the total within cluster sum of squares as suggested by some clustering methods. They have two disadvantages
of not leading to readily solved optimization problems and of not being the most suitable criterion for highly skewed
data typical of economic applications.

For highly skewed data the width of the clusters may be a more suitable measure. The total within cluster width may
be obtained by summing the gaps between adjacent members of the clusters. Cluster size may be controlled by requir-
ing a minimum number of adjacent gaps be included in any cluster. The result is an optimization problem for a linear
objective function over the indicator variables for the gap inclusions. Each data point and its potential cluster neigh-
bors would appear in a constraint which enforces the minimum cluster size. The resulting system can be readily
solved.

For bivariate, or higher dimensional, data a the notion of adjacency is defined even though sorting is no longer well
defined. The size of a cluster can be measured by the length of its minimal spanning tree. The problem of finding
groups of size exactly two is the well known perfect matching problem. One form of clustering is minimal spanning
tree partitioning which resembles the univariate method above. Suitable constraints for minimum cluster size, which
are more elaborate than in the univariate case, can be constructed and the resulting systems solved. For larger prob-
lems, or higher dimensions, we may choose to use only a Delaunay triangulation rather than all adjacencies.

Keywords: Statistical Disclosure Control, Statistical Confidentiality, Microdata Release,
Microaggregation



1. Introduction applied to establishment data. Like most eco-
nomic data, it is highly skewed. When the

The demand for public use samples of the files . 4
effects of microaggregation on secondary anal-

collected by statistical agencies is very strong. _. . . ) o
For demographic data, this demand has be%s’IS are examined, an immediate que§tlop IS
' Re effect of the technique on the distribution

met by standard practices for some time. Thesoef the data. One measure of the effect is the

practices do not carry over to files of establish- o
. : pread within the groups. For skewed data, the
ments. A specialized technique has been deve?— ) . :
. inal groups will have the highest internal
oped to address the needs for establishment . . .
. %gread. Having the final group be of varying
data for secondary analysis. The released da . : . o
) ..~ “Size will further increase its variability so the
is the average of a small number of similal”_~ " .. "~ . o .
. . ) . modification of varying internal group size is
records. This release technique is called micro- .
aggregation [4], [1] very natural. For skewed data, variance may
TR not be the preferred measure of within group
The number of records in the groups to bespread. Often we would prefer to use the range
averaged is as small as the disclosure requiref the group. Variance is associated with the
ments will permit. Often this means five Gaussian distribution. Skewed distributions are
records in a released group average. We wilhore often like the exponential distribution.
use five as our fixed example for simplicityThe Laplace, or double exponential, distribu-
although other values are possible. The origition is a symmetric distribution with the same
nal microaggregation proposal was for a singléong tails as the exponential distribution. The
data variable. The single variable would bd.aplace distribution leads to medians and
sorted and five adjacent records would benean absolute deviations in the same way that
assigned to a group. If the file for release hathe Gaussian distribution leads to means and
one thousand records, there would be two hunsariances. We will measure within group
dred groups of size five and the released publispread by the group range for one dimensional
use file would have two hundred records. Fodata. For higher dimensional data we would
other sizes there could be a partial group lefise a measure of cluster size. We shall find that
over. In the initial proposal, this partial groupthe length of the minimal spanning tree is a
would be combined with the last completeconvenient measure.

group so that the final group would have a siz e L . .
of five to nine members. A modification of thisq_he next modification of the microaggregation

) . .technique is to deliberately have some groups
is to have some number of groups of size si , 7
}rﬁe larger than five, or even six, in order to

and for the enlarged groups to be Internareduce the total within group spread. The count

groups rather than the final groups [3]. To deal .
with higher dimensional data the technique off groups might decrease but allow for lower

i 4 . otal within group spread. When there is a
dimensional reduction was used so that th . L

. : arge gap in the data, we would like it to be
original proposals could be used. The dimen;

. . o petween groups rather than within some group,
sional reduction was a projection, often that, . . . : ) S
_If this is consistent with our overall objectives.

suggested by a principal component analy5|s|_his has been suggested. Methods to achieve it

More direct techniqges are pos;iple, a!thOUQtP]ave been proposed and experiments have
more complex technically. The difficulty is that been done to demonstrate that it is a sensible

sorting is not well defined in two or more :

) . . . suggestion. The proposed methods, based on
dimensions although the notion of adjacent cain . . AR e
be effectively defined genetic al_gorlthm mlmmlzatlon of total W_lthln

' group variance, require much computer time to

The microaggregation technique is typicallyachieve their results [2]. We will demonstrate



direct methods requiring smaller amounts otase the new node would be labeled with the
computer time. The corresponding techniquemidpoint of the gap. Eventually there will be a
in higher dimensions lead to problems wellsingle large cluster containing all the data
known to be computationally difficult. Our points. This is a bottom up procedure. A top
first interest will be in whether the higherdown procedure would start with the sorted
dimensional results are useful. Only if theydata and the gaps to form two clusters by using
prove to be useful would it be worth pursuingthe midpoint of the largest gap to separate the
the question of how to reduce their computaeata into two subclusters. We would repeat this
tional cost. The problems may also be of indewithin each cluster until all the clusters are of
pendent interest to those studying algorithnsize one. However we construct it, the cluster
complexity issues. tree will represent the data. When we seek to
When we seek groups that have small withirﬁorm the microaggregations we will discover a

difference between clustering and microaggre-
group spread there are elementary observa-

tions that are obviously true for univariategatlon' We may find a cluster of an adequate

. : size to form two micro aggregations but the
data. Any two groups will not be interleaved. If . > . :
: ... subclusters violate the microaggregation size
they were interleaved, then groups with

requirements. One of the subclusters may be

smaller spreads could be obtained by exchan%o small while the other is of an acceptable, if

ing members to remove the interleaving. A .. . )
. slightly large, size. This problem occurs when
group of size greater than or equal to ten ca

be broken into two groups so that we will only{he largest gap in the cluster is too close to one

S : of the cluster ends and we must reorganize the
observe groups with sizes from five to less than

: . .Internal structure of the cluster to match the
ten. These observations are problematic in .

higher dimensions. One might define o nicroaggregation requirements. The top down

groups to be disjoint if their convex hulls doprocedur_es can be redefined to \ghore large
aps which are too close to the end points of

not overIa}p bUt.'t.'.s casy to construct_examplegne current cluster. With this redefinition we
where this definition is not compatible with . : .
) ; will have a procedure which avoids large gaps
keeping the group size small. . . . .
and permits variable size microaggregates. We
2. Clustering Approach will later see that it is an effective approximate

. . . . rocedure.
Viewing forming microaggregations as a clus-p

tering problem is very natural. However, it The top down procedure could be organized to
does not readily lead to an optimal solutiorfollow the cluster groupings in the form of a
although it provides useful insights. As anrecursive partitioning process or to follow the
approximation technique it is quite useful. Forgap sizes in the form of a greedy algorithm.
one dimension we may readily construct &Recursive partitioning is the basis of the com-
cluster tree in which the sorted data values anmon quicksort algorithm where an internal
the external leaves of the tree. The first clusteralue is used to separate the current partition
would be of the two data items with the smallinto smaller and larger values by moving the
est gap between them. The node joining thesentries. For microaggregation, the initial data
two data points would be labeled with the midwould already be sorted so that the gaps can be
point of the gap separating them, which is alseasily determined. The largest gap within a
their average in this simple case. The followingpartition can be identified and the subpartitions
clusters would be of the two data points, thaletermined with no need for any data moving.
data point and the cluster or the two cluster&aps near the endpoints of a partition can be
with the smallest gap between them. In eacignored so the partitions are always suitable



for forming microaggregations. The process oter or two clusters as our next step. If they were
finding the largest gap in the current partitionalready in the same cluster then we would not
is essentially that of quicksort if it were to bejoin them again. This is a complication that
used to sort the gaps. There is no data movingpes not arise in one dimension. This process
involved as we are trying to determine whichwould be repeated until all the points have
gaps are boundaries between the microaggreeen joined into a single cluster. This process
gation groups. If the gaps are sorted befores the well known Kruskal algorithm for find-
starting, a processing sequence of the parting the minimal spanning tree. There is a cor-
tions can be based on using the largest gap nesponding top down procedure for finding the
yet processed. Here, the next gap to be praoninimal spanning tree in which we repeatedly
cessed can be anywhere in the data rather theemove the longest connection. We do not
just within the active partition of the recursiveremove connections which would lead to two
procedure. If a gap is too close to a partitiocomponents. This alternate algorithm requires
endpoint it is ignored. This sequence of promore steps than does the Kruskal algorithm so
cessing of the partitions follows the structures rarely used or even described. Both require a
of a greedy algorithm. The recursive partition-sorted list of all the connections as input data.
ing algorithm would examine the unsortedTarjan[5] provides a generalized proof for
gaps repeatedly while the greedy algorithngreedy algorithms that covers both these algo-
would examine the sorted gaps only once.  rithms and many other variants. Partitioning

the minimal spanning tree is one of many clus-

We may also learn about the limitations of th% . . ) :
) . e ering algorithms. It may not satisfy the size
clustering notions by examining alternate data

sets that are equivalent under the clusterinreqUIrementS of the microaggregation prob-

: . Bm as we have seen in the one dimensional
procedures. All of the clustering decisions are
case. Rather we would use the top down proce-

based on the comparison of gaps. A new set g ure with the requirement that the removal of a

gaps, with a reference data point, will define a :
. connection should not create a subcluster

new data set. For example, we could define the, . .~ .
" . Which is too small to be a microaggregate. We

new gaps to be 1 plus a small positive multiple

of the given gaps with a reference point of 1 aWould start this procedure with all the connec-

| lons as, in general, the final set of connections
the smallest value. This new data set would be - . - :
IS not contained in the minimal spanning tree.

the integers with a small perturbation but with.l_hiS would usually be more data than we
unchanged gap comparisons. For small pertur-ould like so we would choose a triangulation

bations the microaggregation groups would alf " ~ . L ;
o : hich includes the minimal spanning tree,
be of size five. However the clustering base : i
such as the Delaunay triangulation. For two

groupings could be quite different. dimensional data the total number of connec-
For two or more dimensions the sorting basetlons in the Delaunay triangulation is a small
procedure can not be applied. The ability tanultiple of the number of data points. A
judge adjacency by sorting and examiningDelaunay triangulation in two dimensions can
gaps is lost. In one dimension there are twbe determined at a low cost comparable to
adjacent points, except at the ends. In morsorting the data on one of its coordinates,
dimensions there are many adjacent points anghich is the first step in the standard algo-
even the number of adjacent points may varyithms. Some of the final groupings may be
considerably. To form clusters in a bottom upgarger than twice the microaggregation size.
fashion we would join the two points which There will be a single central point with sev-
are closest, as we did in one dimension. Weral groups, each too small to be a microaggre-
would then join two points, a point and a clusgate, surrounding it. The number of



this at the end points. If we avoid technical

issues such as connections of zero or the same
length, we will have solutions in which the
o= indicator variables assume values of zero or

one when they are only assumed to be continu-
ous on the interval from zero or one. The opti-
mal solutions can be obtained with linear

programming with reasonable cost.
Large group postprocessed into 2 groups ) _ o
For two or more dimensions the optimization

, T roblem is more difficult to solve. The connec-
surrounding groups is limited by the geometry. )
tion structure of the groups is more complex

of crowding, o that the regular hexagon is $han is the structure in one dimension. The

boundary case in two dimensions. An illustra- L
. e . . . structure has many similarities to the structure
tion of this is would be five pairs of points

. of the traveling salesman problem, which has

stage this would become two microaggregate%een used to develop many techniques in oper-

one of five points consisting of two pairs anOIzitions research. A comparable development is
P 9 P beyond the scope of the current work. Finding

the central point and the other of six points ! .
. : : a solution for smaller problems will allow us to
consisting of three pairs which have been

joined. A more awkward example would beJudge the quality of the approximate method

' . tpat was developed above. The extreme case of
three groups of size three around a Centr%xactl one aroub mav be expressed as an ooti-
point. The postprocessing can be done with thg y group may P P

T ) . mization problem. This is the optimization for-
optimization technique discussed below. . L X .
mulation for the minimal spanning tree. This

3. Optimization Approach formulation requires that the total number of

connections selected be the number of links in
the spanning tree, which is one less than the
number of data points, and that there be no

sets of microagareaations. and a model WitEOOpS in the selected connections. This last
ggreg : ' condition must be true for all subsets of the

constraints, to define possible sets of microagdata For n data points, there are 2n subsets

gregatlons. We can model the problem by hav'i’his formulation is impractical to use if all the
ing two data points be in the same

. S . conditions must be expressed before starting
microaggregation if the connection betwee

them is chosen as shown by a value of 1 for itshe computation. Very few of the conditions

indicator function. The objective function are required in any particular example so an

initial trial solution is found. Conditions are
would be the total length of all selected con- L .

: . : T .~ added to eliminate any loops which are found.
nections. In one dimension this is relatively.

. . . _’The newly added conditions may allow some
simple as each point has two connections . .

: i . _of the earlier conditions to be dropped. The
except the two end points with one connection;

. ) Jorocess is repeated until the trial solution is
For groups of size five or greater we woul .
free of loops. A different example would

require that at least four consecutive connec-_ " . . »
. : require a different set of conditions. However
tions be made before a connection could be . . . o

n practice this iterative formulation is not used

absent. Such a condition would be xi+1 + xi+ib . ;
ecause the minimal spanning tree problem

+ Xi+3 + Xi+4 + xi+52 4. The number of such has very efficient solutions which directly use
conditions is limited by the number of data. y y

points. We would need minor modifications to'ts special structure.

To treat the microaggregation problem as a
optimization problem we will need both an
objective function, to choose between variou



We are seeking multiple spanning trees for disvalues would be three points joined with con-
joint subsets of the data. We could use discreteections of weight 1/2. The most elementary
optimization with our conditions of a lower condition is that every point should be con-
limit on the size of the subsets and the condirected to some other point. The equation for
tions that the spanning trees have no loopshis would be that the sum of all connections to
Discrete optimization is typically slow as it a point should sum to 1 or more. Two connec-
often is based on very generalized methodsons of weight 1/2 satisfies this condition. The
used to guide an underlying continuous opticondition that the three points should not form
mization. Much of discrete methods researcla loop requires that the sum of the three indica-
is directed at exploiting the properties of thetors should be 2 or less, which is met in this
problem under study to guide a continuousase by the fractional weights. We want the
optimization method to find the discrete solu-internal connections to sum to 2, unless there
tion. The first difficulty we notice about the are also connections from three points to other
microaggregation problem is that we do knowpoints. If the value we choose for the limit is 2
how many spanning trees we are trying to conthen we are permitting a group of size three. In
struct. If we knew this we could ask what hapfact we do not want such small groups so the
pens as we modify our objective function totest value must be 3 to keep the group size up.
successively merge the group spanning tree8ye can add up all the connections from the
perhaps with some reorganization, until wethree points, being careful to avoid using the
arrive at the minimal spanning tree for all theconnections between the points twice. The
data. When we try to apply continuous optimi-condition of avoiding the double counting of
zation to find the spanning trees of manythe internal connections makes these condi-
groups we encounter fractional values. This isions stronger than just adding all the connec-
not surprising as the same phenomena arisestions to the three points. (In practice we will
the traveling salesman problem and ishave variables representing the sum of all con-
addressed by the so called comb inequalitiesiections to a point so we can sum these and
The fractional values are not an issue for theubtract the double counted connections to
full minimal spanning tree problem. We construct more compact equations for the opti-
observe that if we decrease the number ahization software.) We would certainly apply
groups, by increasing the numbers of connedhis condition to any isolated group of size
tions that are to be selected, we will have nthree that was observed. We could also search
fractional values at some point even though wéor triples of points which violate the condi-
have only used conditions to ensure no loopgson. We have constructed a new set of condi-
and minimal group size. We will obtain sometions directed at removing fractional values
number of unmerged groups and of mergeftfom the continuous optimization, or a cut in
groupings. The merged groupings definghe operations research usage. This cut has two
smaller subproblems that can be addressed lmges of either extending a group which is too
the same methods. The calculation of the inesmall or of helping eliminate fractional values.
quality systems for specific small examplesSuch a cut could be used to extend an isolated
suggests that this reduction will always workgroup of size two. It could also be used for
although general proofs are not available. groups of size four which could either be
. ... __extended or help have fractional values elimi-
We would like to have stronger conditions .

. : . nated. It could also be applied to larger groups
which will allow us to find both more and . .
smaller subproblems at each stage of out proe-XC(':'pt it would no longer have |_ts test value

llncreased to extend the group size above the

cessing. The smallest example of fractional . . .
minimum group size.



A working search procedure would be to applyTo follow the style of the one dimensional sort-
several sets of conditions until a new fractioring method, we would like a method which is
free group has been identified and the set dfased on comparisons without the global bal-
conditions is not changing. The conditionsancing of the numerical procedures. In the
would be those for no loops, for no small isosorting method we take an extreme point and
lated groups and for no fractional values incollect the points which are closest to it into a
cuts of size two and three. If a new group hagroup and repeat until all points have been
been found we separate it out and start over assigned to a group. The extreme points would
the smaller problem. If the condition set stopde on the convex hull of the data points. In two
changing with no new group found then wedimensions the chosen extreme point could be
would increase the order of the cut being usedlefined by the point on the convex hull which
There are many higher order cuts which wesubtends the most acute angle along the con-
would prefer not to have to use. This reservesex hull. For higher dimensions we would use
the additional power of the higher order cutssolid angle or its extensions. The points to be
for the smaller problems which can be isolatedjrouped with the extreme point could be its
with the lower order cuts. nearest neighbors. This is a procedure which is
based on comparisons and effected by the local
points only. It can be readily implemented as
Microaggregation was originally defined by convex hull and nearest neighbor computations
sorting and grouping. In one dimension thecan be implemented at low cost. The procedure
definition is both pragmatic and effective. Wewill tend to squeeze arouneémpty regions
have provided two enhanced methods; one amther than just reach across them as is
approximate or heuristic method and the otherequired in one dimension. It may also leave
an exact method. The extension of the originakolated points so the groups may not well sep-
definition to two or more dimensions is some-arated.

what problematic.

4. Reference Approach

5. Examples

The pfOb'e”? of flndlng groups of siz€ two, "We have three sets of procedures that can be
exact matching, is a very well studied problem_ " . ) i
applied to data. The one dimensional proce-

in operations research. The data is the distanc :
. . dures have corresponding procedures for two
between points or the cost of a connection in . : . R
: . or more dimensions. A simple indicative
some graph. The optimal exact matching prob- ) :
) X : xample serves to illustrate the differences
lem is now a classical problem which was used’., . : :
.~ Wijthin the one dimensional procedures. The
to develop many methods and has been subjec

. ) example data are 1000 values from a random
to many improvements with the best algo-

) . - number generator supplied with a Fortran
rithms being very efficient, low order polyno- . o .

. . compiler with its default starting value. The
mial, but somewhat elaborate. The extension tQ

. . .. |dealized version of this data would have each
groups of size three is mostly notable for its

discovery that the problem is qualitativerOf the 1000 values centered in its own equal

harder. It is called X3C (Exact 3 Cover) in theSlzed p?‘”e' fqr all gaps of Siz€ 0.001. For a
group size of five, the total width of all groups

list of well knownNP Completgroblems. The would be 0.8. The reference technique pro-

extensions to larger groups will not lead to eas-, : )
. : uces results much as the idealized data would
ier problems. The operations research methods

. i . INdicate. The approximate technique has been
will tend to avoid long connections as the : - .
. . uccessful in avoiding the larger gaps with a
influence of any connection extends to al

matching through the objective function reduced group count. The optimal technique
' has improved the grouping with a slightly



decreased total width and a slightly increasettee approximation
group count. The observed data are:

observed data are:

would suggest.

The

Count Total Width Count Total Length
Reference 200 0.79 0.8 * MST 16.44
Approximate 164 0.63 Reference 200 18.28
Optimal 170 0.62 Approximate 155 16.18
. . Hybrid 163 16.03
The methods for two or more dimensions ar.olotimal 168 1590

analogs of the one dimensional procedures: :
The methods are illustrated for two dimension$- Conclusion

and readily extended to more dimensions. Thene ynjvariate microaggregation technique can
test data in 1000 points distributed uniformlype extended to allow for varying group size.
in the unit square. The data are displayed ifthis permits the groups to be chosen for
Figure 1 below. (1000 data points in a smalyreater within group homogeneity. An approxi-
display may exceed the reproduction procesgation algorithm, which is a modification of
capabilities used for this note. Multiple generthe ysual quicksort algorithm, will produce
ation copies are unlikely to be successful.) Ijata dependent microaggregations at a cost
the points were placed on a uniform grid anGomparable to sorting the data. The quality of
connected the total connection length would bg,e grouping found is less than that obtained
1000 * (1/) = 31.62 when the approximation ispy yse of optimization techniques. The differ-
made that the grid fits exactly. A minimal span-gpce in quality between the approximation and
ning tree of the data can be constructed and hge optimization result is pleasantly small. The
a length of 20.55. The minimal spanning tree igptimization based solution is not difficult to
shown in Figure 2 below. The poor approximazchieve but may be awkward for some organi-
tion illustrates the extent to which it is possible, aiions. The robustness of the observation on
with the extra freedom to move in two dimen-the quality of the approximation should be
sions to find paths around the gaps in the datgssted by more extensive experimentation with
A natural comparison value for microaggregayoth artificial and real data.

tions would be 4/5 * 20.55 = 16.44. The refer- o

ence groups are given in Figure 3 below, thd he univariate methods have natural exten-
approximate groups in Figure 5 below and thé&ions to two or more dimensions. The underly-
optimal groups in Figure 6 below. A hybrid ing notion of adjacency is both simple and
process to use the approximation methods tatural in one dimension and easily imple-
find gross groupings with the optimizationmented by sorting. For two or more dimen-
methods used for the final details was als§ions the notion of adjacency is natural but
tried. The gross groupings were approximatSimplicity and ease of implementation are lost
microaggregations of minimal size 25. Each ofS sorting is not well defined. Standard tech-
these gross groups were then reduced to mulitiques from computatlonal geometry can be
ple optimal microaggregations of minimal size2dapted to the microaggregation problem. An
five. The results for this hybrid calculation @Pproximation method, which is a modifica-
were 163 groups with a total length of 16.03 a§on of a minimal spanning tree algorithm, is
shown in Figure 4 below. We see that theéluite effective. Unfortunately it requires two
approximate, hybrid and optimal solutionsStages of processing as it can generate over
have sizes that are consistent with avoiding théized groups. The two stages can be used to
longer connections in the minimal spanninggdvantage to obtain a better approximation by
tree as the groups are formed. The referendésing the optimization based second stage to
groups are larger than the minimal spanningrocess small local problems. The approxima-



tion method is effective but provides less qualtional difficulties beyond those of triangulation
ity in grouping than does the optimizationin higher dimensions.

based method. The optimization problem is noJ} References
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able for small groups but is not, without further

development, for direct use on larger files. The

extension to higher dimensions pose no addi-
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Figure 4: Approximate Microaggregates

155 groups - 16.18 length

Figure 3: Reference Microaggregates

200 groups - 18.28 length
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Figure 6: Optimal Microaggregates

Figure 5: Hybrid Microaggregates

168 groups - 15.90 length

163 groups - 16.03 length



